If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+59x=40
We move all terms to the left:
8x^2+59x-(40)=0
a = 8; b = 59; c = -40;
Δ = b2-4ac
Δ = 592-4·8·(-40)
Δ = 4761
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4761}=69$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-69}{2*8}=\frac{-128}{16} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+69}{2*8}=\frac{10}{16} =5/8 $
| 20x/5=67 | | 2(3x+5)+(2x+5)=1 | | 280-2x=0 | | -0.16x-0.05(5-5x)=0.05(x-5)-0.24 | | 20x÷5=67 | | 0.003(9-x)+0.06(x-3)=1 | | 0.2x+0.02x=4.4 | | 15−42b=815-42b=8 | | 15x-11=-3 | | 0.2x=8.26 | | 0.4x+0.42=0.4x+0.62 | | 8=0.05b | | 4=t/4.5 | | 2(a-3)=180 | | x2-6x+1=3x+5/2 | | 0.2y=3 | | 2y+4=y+43 | | 4u–6=3u | | 2z-34=z+26 | | 35,000-2x=0 | | 2c-28=c+44 | | 4x2-1=35 | | 2c+4=c+46 | | x+x-9+2x=83 | | 475-s=164 | | 610(t)=16t^2 | | 5x(x+5)=40x+5(x^2+11) | | 489=118+7n | | 2u-46=u+45 | | 1=f/29-3 | | 16d-46=226 | | 2z-50=z+50 |